\documentclass{article}
\usepackage[papersize={45mm, 30mm}, text={40mm, 35mm}]{geometry}
\usepackage{tikz}
\usetikzlibrary{arrows}
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}[node distance=1cm,>=stealth',elem/.style={circle,draw,fill=orange!40}]
\node [elem] (b2) {2};
\node [elem] (b4) [below of=b2, xshift=-10mm] {4} edge [->] (b2);
\node [elem] (b3) [below of=b2, xshift= 8mm] {3} edge [->] (b2);
\node [elem] (b1) [below of=b4, xshift= -8mm] {1} edge [->] (b4);
\node [elem] (b0) [below of=b4, xshift= 8mm] {0} edge [->] (b4);
\node [elem] (b5) [below of=b3, xshift= 4mm] {5} edge [->] (b3);
\end{tikzpicture}
\end{figure}
\end{document}
\documentclass{article}
\usepackage[papersize={85mm, 25mm}, text={75mm, 20mm}]{geometry}
\usepackage{pgf, tikz}
\usetikzlibrary{arrows,automata}
\begin{document}
\begin{figure}[h]
\footnotesize
\centering
\begin{tikzpicture}[
% type of arrow head
>=stealth',
% keep arrow head from touching the surface
shorten >= 1pt,
% automatic node positioning
auto,
%
node distance=1.5cm,
% line thickness
semithick,
% text for the initial state arrow. I left it as blank
initial text=]
\tikzstyle{every state}=[draw=blue!50, thick, fill=blue!20,
minimum size=4mm]
\node[state] (v1) {$v_1$};
\node[state] (v2) [right of=v1] {$v_2$};
\node[state] (v3) [right of=v2] {$v_3$};
\node[state] (v4) [right of=v3] {$v_4$};
\node[state] (v5) [right of=v4] {$v_5$};
\path[->] (v1) edge (v2);
\path[->] (v3) edge (v4);
\path[->] (v4) edge (v5);
\path[->, bend right, bend angle = 5] (v2) edge (v5);
\path[->, bend left, bend angle = 25] (v1) edge (v3);
\end{tikzpicture}
\end{figure}
\end{document}
Let G be a d-regular bipartite graph and AG is its adjacency matrix. Prove that the eigenvalue of AG is -d.
One example:
- Let G be a graph where the left vertices are {1,3,5} and the right vertices are {2,4,6}.
- The undirected edges are (1,2), (1,4), (3,4), (3,6), (5,1), (5,6).
octave:1> B=zeros(6,6)
B =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
octave:2> B(1,2)=1; B(1,4)=1; B(3,4)=1; B(3,6)=1; B(5,2)=1; B(5,6)=1
B =
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 0 0 0
octave:3> B = B + B'
B =
0 1 0 1 0 0
1 0 0 0 1 0
0 0 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
octave:4> [EVEC, EVAL] = eig(X)
EVEC =
-0.50000 0.65328 0.50000 -0.27060
-0.50000 0.27060 -0.50000 0.65328
-0.50000 -0.27060 -0.50000 -0.65328
-0.50000 -0.65328 0.50000 0.27060
EVAL =
Diagonal Matrix
1.7413e-16 0 0 0
0 5.8579e-01 0 0
0 0 2.0000e+00 0
0 0 0 3.4142e+00
octave:5>