September 21, 2013
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | \documentclass [10pt]{article} % for smallper page \usepackage [papersize={4.2in, 1.4in}, text={4in, 1.3in}]{geometry} % for fancy math \usepackage {amsmath} % rank operator \DeclareMathOperator *{ \rank }{rank} % Matrix transpose \newcommand { \trans }[1]{ \ensuremath {{#1}^ \top }} % for extra space at the end of abbreviation \usepackage {xspace} % positive semi-definite \newcommand { \psd }{ \textsc {psd} \xspace } % boldface uppercase letters for matrices \newcommand { \Abf }{ \ensuremath { \mathbf A}} \newcommand { \Bbf }{ \ensuremath { \mathbf B}} % boldface lowercase letters for vectors \newcommand { \xbf }{ \ensuremath { \mathbf x}} % for math blackboard font \usepackage {amssymb} % set of real numbers \newcommand { \Rbb }{ \ensuremath { \mathbb R}} \usepackage {palatino} \usepackage [sc]{mathpazo} \begin {document} \noindent For any real symmetric matrcies $ \Abf $ such that $ \rank ( \Abf_ {n \times n})=r$, the following statements are equivalent and any one of them can serve as the definition of \emph {positive semi-definite} ( \psd ) matrices. \begin {itemize} \item $ \trans \xbf \Abf \xbf \geq 0$ for any non-zero vector $ \xbf \in \Rbb ^{n \times 1}$. \hfill \refstepcounter {equation} \textup {( \theequation )} % \item All the $n$ eigenvalues of $ \Abf $ are non-negative. \hfill \refstepcounter {equation} \textup {( \theequation )} % \item $ \Abf = \trans \Bbf \Bbf $ for some $ \Bbf $ with $ \rank ( \Bbf )=r$. \hfill \refstepcounter {equation} \textup {( \theequation )} % \end {itemize} \end {document} |
Comments Off on Equation numbering in itemized list