April 17, 2010
This document is generated as follows.
[ytyoun@Ordnung:~ /doQment/ ] # xelatex test [ytyoun@Ordnung:~ /doQment/ ] # makeindex test [ytyoun@Ordnung:~ /doQment/ ] # makeindex test.nlo -s nomencl.ist -o test.nls [ytyoun@Ordnung:~ /doQment/ ] # xelatex test |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | \documentclass [12pt]{article} \usepackage {hyperref} \usepackage [papersize={120mm, 160mm}, text={95mm, 130mm}]{geometry} % fancy fonts \usepackage {concrete} % for fancy section font and color \usepackage {color} \definecolor {section_color}{rgb}{0.35,0.0,0} \usepackage {sectsty} \allsectionsfont { \color {section_color} \sffamily \selectfont } % fancy math \usepackage {amsmath,amssymb} % mathematical shorthand \newcommand { \Abf }{ \ensuremath { \mathbf {A}}} \newcommand { \ubf }{ \ensuremath { \mathbf {u}}} \newcommand { \vbf }{ \ensuremath { \mathbf {v}}} \newcommand { \xbf }{ \ensuremath { \mathbf {x}}} \newcommand { \Vcal }{ \ensuremath { \mathcal {V}}} \newcommand { \Rbb }{ \ensuremath { \mathbb {R}}} \newcommand { \norm }[1]{ \ensuremath { \lVert {#1} \rVert }} \newcommand { \proj }[2]{ \ensuremath { \pi_ {#1}(#2)}} \newcommand { \trans }[1]{ \ensuremath {{#1}^ \top }} \newcommand { \bkt }[1]{ \ensuremath { \langle {#1} \rangle }} % math operators \DeclareMathOperator { \trace }{trace} % index generation \usepackage {makeidx} \makeindex % 'list of notations' generation \usepackage [refpage]{nomencl} % refer to the page where notation appears \renewcommand { \nomname }{List of Notations} \renewcommand *{ \pagedeclaration }[1]{ \unskip \dotfill \hyperpage {#1}} \makenomenclature \begin {document} \paragraph {Matrix Norm} \index {Matrix Norm} The squared \index {Matrix Norm!Frebenius norm}Frobenius norm of a matrix $ \Abf_ {m \times n}$ is defined as \nomenclature {$ \norm { \Abf }_F$}{Frobenius norm of $ \Abf $} \begin {equation*} \norm { \Abf }_F^2 = \sum_ {i=1}^m \sum_ {j=1}^na_{ij}^2 = \trace ( \trans \Abf \Abf ). \end {equation*} The 2-norm \index {Matrix Norm!2-norm} of a matrix $ \Abf_ {m \times n}$ is defined as \nomenclature {$ \norm { \Abf }_2$}{2-norm of $ \Abf $} \begin {equation*} \norm { \Abf }_2 = \max_ { \norm { \xbf }_2=1} \norm { \Abf \xbf }_2 \quad \text { for $ \xbf \in \Rbb ^{n \times 1}$} \end {equation*} For a subspace $ \Vcal \subseteq \Rbb ^n$ and a vector $ \ubf \in \Rbb ^n$, let $ \proj { \Vcal }{ \ubf }$ \nomenclature {$ \proj { \Vcal }{ \ubf }$}{Projection of $ \ubf $ onto subspace $ \Vcal $} \index {Projection} be the projection of $ \ubf $ onto $ \Vcal $. If $ \ { \vbf_1 ,..., \vbf_k \ }$ is a basis for $ \Vcal $, then \begin {equation*} \proj { \Vcal }{ \ubf } = \sum_ {i=1}^k \bkt { \vbf_i , \ubf } \vbf_i \end {equation*} \printnomenclature \printindex \end {document} |
Comments Off on LaTeX Example