January 26, 2010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | \documentclass [12pt]{article} \pagestyle {empty} \usepackage {amsmath,amssymb,amsthm} \usepackage [papersize={100mm, 130mm}, text={90mm, 120mm}]{geometry} % order: \order[st]{1}, \order{k} \newcommand { \order }[2][th]{ \ensuremath {{#2}^{ \mathrm {#1}}}} \newcommand { \Abf }{ \ensuremath { \mathbf {A}}} \newcommand { \Bbf }{ \ensuremath { \mathbf {B}}} \newcommand { \fpd }[2]{ \ensuremath { \frac { \partial {#1}}{ \partial {#2}}}} \begin {document} We prove the product rule of matrix derivative. \begin {equation*} \fpd {}{t} \Abf \Bbf = \fpd { \Abf }{t} \Bbf + \Abf \fpd { \Bbf }{t} \end {equation*} Let $[ \boldsymbol {*}]_{ij}$ be the element of $ \boldsymbol {*}$ in the $ \order {i}$ row and $ \order {j}$ column. Then it's enough to prove \begin {equation*} \fpd {}{t} \left [ \Abf \Bbf \right ]_{ij} = \left [ \fpd { \Abf }{t} \Bbf + \Abf \fpd { \Bbf }{t} \right ]_{ij.} \end {equation*} Note that $[ \Abf \Bbf ]_{ij=}= \sum_ka_ {ij}b_{kj}$. \begin {align*} \fpd {}{t}[ \Abf \Bbf ]_{ij} &= \fpd {}{t} \sum_ka_ {ik}b_{ij} \ \ &= \sum_k \left ( \fpd {a_{ik}}{t}b_{kj} + a_{ik} \fpd {b_{kj}}{t} \right ) \ \ &= \sum_k \left ( \fpd {a_{ik}}{t}b_{kj} \right ) + \sum_k \left (a_{ik} \fpd {b_{kj}}{t} \right ) \ \ &= \left [ \fpd { \Abf }{t} \Bbf \right ]_{ij} + \left [ \Abf \fpd { \Bbf }{t} \right ]_{ij} \ \ &= \left [ \fpd { \Abf }{t} \Bbf + \Abf \fpd { \Bbf }{t} \right ]_{ij} \end {align*} \end {document} |
Comments Off on matrix calculus: product rule of matrix derivative