April 17, 2010
This document is generated as follows.
[ytyoun@Ordnung:~/doQment/]# xelatex test [ytyoun@Ordnung:~/doQment/]# makeindex test [ytyoun@Ordnung:~/doQment/]# makeindex test.nlo -s nomencl.ist -o test.nls [ytyoun@Ordnung:~/doQment/]# xelatex test
\documentclass[12pt]{article} \usepackage{hyperref} \usepackage[papersize={120mm, 160mm}, text={95mm, 130mm}]{geometry} % fancy fonts \usepackage{concrete} % for fancy section font and color \usepackage{color} \definecolor{section_color}{rgb}{0.35,0.0,0} \usepackage{sectsty} \allsectionsfont{\color{section_color}\sffamily\selectfont} % fancy math \usepackage{amsmath,amssymb} % mathematical shorthand \newcommand{\Abf}{\ensuremath{\mathbf{A}}} \newcommand{\ubf}{\ensuremath{\mathbf{u}}} \newcommand{\vbf}{\ensuremath{\mathbf{v}}} \newcommand{\xbf}{\ensuremath{\mathbf{x}}} \newcommand{\Vcal}{\ensuremath{\mathcal{V}}} \newcommand{\Rbb}{\ensuremath{\mathbb{R}}} \newcommand{\norm}[1]{\ensuremath{\lVert{#1}\rVert}} \newcommand{\proj}[2]{\ensuremath{\pi_{#1}(#2)}} \newcommand{\trans}[1]{\ensuremath{{#1}^\top}} \newcommand{\bkt}[1]{\ensuremath{\langle{#1}\rangle}} % math operators \DeclareMathOperator{\trace}{trace} % index generation \usepackage{makeidx} \makeindex % 'list of notations' generation \usepackage[refpage]{nomencl} % refer to the page where notation appears \renewcommand{\nomname}{List of Notations} \renewcommand*{\pagedeclaration}[1]{\unskip\dotfill\hyperpage{#1}} \makenomenclature \begin{document} \paragraph{Matrix Norm}\index{Matrix Norm} The squared \index{Matrix Norm!Frebenius norm}Frobenius norm of a matrix $\Abf_{m\times n}$ is defined as \nomenclature{$\norm{\Abf}_F$}{Frobenius norm of $\Abf$} \begin{equation*} \norm{\Abf}_F^2 = \sum_{i=1}^m\sum_{j=1}^na_{ij}^2 = \trace(\trans\Abf\Abf). \end{equation*} The 2-norm\index{Matrix Norm!2-norm} of a matrix $\Abf_{m\times n}$ is defined as\nomenclature{$\norm{\Abf}_2$}{2-norm of $\Abf$} \begin{equation*} \norm{\Abf}_2 = \max_{\norm{\xbf}_2=1}\norm{\Abf\xbf}_2\quad \text{for $\xbf\in\Rbb^{n\times 1}$} \end{equation*} For a subspace $\Vcal\subseteq \Rbb^n$ and a vector $\ubf\in\Rbb^n$, let $\proj{\Vcal}{\ubf}$ \nomenclature{$\proj{\Vcal}{\ubf}$}{Projection of $\ubf$ onto subspace $\Vcal$} \index{Projection} be the projection of $\ubf$ onto $\Vcal$. If $\{\vbf_1,...,\vbf_k\}$ is a basis for $\Vcal$, then \begin{equation*} \proj{\Vcal}{\ubf} = \sum_{i=1}^k \bkt{\vbf_i,\ubf}\vbf_i \end{equation*} \printnomenclature \printindex \end{document}
Comments Off on LaTeX Example