April 17, 2011
Let G be a d-regular bipartite graph and AG is its adjacency matrix. Prove that the eigenvalue of AG is -d.
One example:
- Let G be a graph where the left vertices are {1,3,5} and the right vertices are {2,4,6}.
- The undirected edges are (1,2), (1,4), (3,4), (3,6), (5,1), (5,6).
octave:1> B=zeros(6,6) B = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 octave:2> B(1,2)=1; B(1,4)=1; B(3,4)=1; B(3,6)=1; B(5,2)=1; B(5,6)=1 B = 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 octave:3> B = B + B' B = 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 octave:4> [EVEC, EVAL] = eig(X) EVEC = -0.50000 0.65328 0.50000 -0.27060 -0.50000 0.27060 -0.50000 0.65328 -0.50000 -0.27060 -0.50000 -0.65328 -0.50000 -0.65328 0.50000 0.27060 EVAL = Diagonal Matrix 1.7413e-16 0 0 0 0 5.8579e-01 0 0 0 0 2.0000e+00 0 0 0 0 3.4142e+00 octave:5>
Comments Off on Spectral Graph Theory
no comment until now