July 19, 2015
% positive part >> P=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1; 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0; 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1; 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1; 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1; 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0; 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0; 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0; 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1; 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0; 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1]; % negative part >> N = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0; 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1; 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0; 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0; 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0; 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1; 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1; 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1; 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0; 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1; 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0]; % zero matrix >> Z = zeros(size(N)(1)); % an signed adjacency matrix of a complete bipartite graph >> H = [Z, P-N; P'-N', Z]; % eigenvalues of a signed adjacency matrix >> eig(H) ans = -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 -3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641 % check that it's a sqrt(12) >> 3.4641^2 ans = 12.000 % the leading principal sub-matrix of size 12 >> A12 = eig(H(1:12, 1:12)), size(A12) A12 = 0 0 0 0 0 0 0 0 0 0 0 0 ans = 12 1 % the leading principal sub-matrix of size 13 >> A13 = eig(H(1:13, 1:13)), size(A13) A13 = -3.46410 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3.46410 ans = 13 1 % the leading principal sub-matrix of size 14 >> A14 = eig(H(1:14, 1:14)), size(A14) A14 = -3.4641e+00 -3.4641e+00 -2.2869e-16 -5.1835e-17 -3.1072e-32 -9.8437e-33 -9.1270e-34 -1.6678e-48 6.7204e-34 2.6380e-33 5.5511e-17 1.0011e-16 3.4641e+00 3.4641e+00 ans = 14 1 % the leading principal sub-matrix of size 15 >> A15 = eig(H(1:15, 1:15)), size(A15) A15 = -3.4641e+00 -3.4641e+00 -3.4641e+00 -1.2569e-16 -5.2487e-17 -2.7846e-17 8.3967e-19 2.9178e-17 1.3011e-16 2.6577e-16 6.1994e-16 7.9764e-16 3.4641e+00 3.4641e+00 3.4641e+00 ans = 15 1 % the leading principal sub-matrix of size 16 >> A16 = eig(H(1:16, 1:16)), size(A16) A16 = -3.4641e+00 -3.4641e+00 -3.4641e+00 -3.4641e+00 -4.8088e-16 -3.2142e-16 -1.4036e-16 1.4234e-17 1.1284e-16 2.6229e-16 4.1426e-16 4.6066e-16 3.4641e+00 3.4641e+00 3.4641e+00 3.4641e+00 ans = 16 1
Comments Off on Lifts, eigenvalues and Hadamard matrices
no comment until now