The Cauchy distribution is a symmetric distribution on (—o0, co) with pdf
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In this paper, we only deal with the case § = 0.

Consider two independent Gaussian random variables X, Y ~ N(0, 1). We will
prove that the ratio X/Y is a Cauchy distribution by (1) defining the transformation
U= X/Y andV = |Y|, (2) finding the joint pdf Fy;y (u, v), and (3) integrating out
V to obtain the marginal pdf of U.

Unfortunately, the mapping U = X/Y and V' = |Y| is not one-to-one: the two
points (z,y) and (—x, —y) map to the same (u, v) We need to partition (X, Y) into
Ay, A1, As such that the mapping from A; to (U, V') is one-to-one.

1. Ay = {(X,Y) : Y = 0}: This exceptional case does not happen because
Pr[Y = 0] =0whenY ~ N(0,1).
2. Ay = {(X,Y) : Y > 0}: The mapping U = X/Y,V = |Y] is one-to-one,

and the inverse mappings are hy1(u, v) = uv, hgy = v.

3. Ay = {(X,Y) : Y < 0}: The mapping U = X/Y,V = |Y] is one-to-one,

and the inverse mappings are hi2(u, v) = —uwv, hos = —v.
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