
e Cauchy distribution is a symmetric distribution on (−∞,∞) with pdf

fX(x; θ, γ) =
1

π
· γ

(x− θ)2 + γ2

In this paper, we only deal with the case θ = 0.
Consider two independent Gaussian random variablesX, Y ∼ N(0, 1). We will

prove that the ratioX/Y is a Cauchy distribution by (1) defining the transformation
U = X/Y and V = |Y |, (2) finding the joint pdf FU,V (u, v), and (3) integrating out
V to obtain the marginal pdf of U .

Unfortunately, the mapping U = X/Y and V = |Y | is not one-to-one: the two
points (x, y) and (−x,−y)map to the same (u, v)We need to partition (X, Y ) into
A0, A1, A2 such that the mapping from Ai to (U, V ) is one-to-one.

1. A0 = {(X, Y ) : Y = 0}: is exceptional case does not happen because
Pr[Y = 0] = 0 when Y ∼ N(0, 1).

2. A1 = {(X,Y ) : Y > 0}: e mapping U = X/Y , V = |Y | is one-to-one,
and the inverse mappings are h11(u, v) = uv, h21 = v.

3. A2 = {(X,Y ) : Y < 0}: e mapping U = X/Y , V = |Y | is one-to-one,
and the inverse mappings are h12(u, v) = −uv, h22 = −v.
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, −∞ < u < ∞, 0 < v < ∞
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